

(r*g*)* CONNECTEDNESS AND (r*g*)* COMPACTNESS IN TOPOLOGICAL SPACES

N. MEENAKUMARI & T. INDIRA

PG and Research, Department of Mathematics, Seethalakshmi Ramaswamy College,

Trichirapalli, India

ABSTRACT

The aim of this paper is to introduce the concept of $(r^*g^*)^*$ connectedness and $(r^*g^*)^*$ compactness and study some of their properties

KEYWORDS: (r*g*)* Closed Sets, (r*g*)* Open Sets, (r*g*)* Open Cover, (r*g*)* Irresolute Maps, (r*g*)* Continuous Maps

Mathematics Subject Classification: 54A05

1. INTRODUCTION

N Levin [4] introduced the concept of generalized closed set in topological spaces. In 1974, Das defined the concept of semi-connectedness in topology and investigated its properties. Balachandran, Sundaram and Maki [1] introduced a class of compact space called Go-compact space and Go-connected space using g-open cover. Easwaran and pushpalatha [3] introduced and studied \mathfrak{I}^* -generalized compact spaces and \mathfrak{I}^* connected spaces A. M. Al. Shibari [9] S. S. Benchalli and Priyanka M. Bansali introduced rg-compact spaces and rg-connected spaces and study some of their properties. In this paper we introduce the concept of (r*g*)*connectedness and (r*g*)* compactness and study some of their properties.

Definition 2.1: A subset A of a Topological Space is said to be a $(r^*g^*)^*$ closed set [6] if cl(A) $\stackrel{\checkmark}{-}$ U whenever $A\stackrel{\backsim}{-}$ U and U is r^*g^* - open. The complement of $(r^*g^*)^*$ closed set is $(r^*g^*)^*$ open.

Definition 2.2: A map f: $(X, {}^{\tau}) \xrightarrow{\sigma} (Y, {}^{\sigma})$ is called $(r^*g^*)^*$ -continuous [7] if the inverse Image of every closed set in $(Y, {}^{\sigma})$ is $(r^*g^*)^*$ -closed in $(X, {}^{\tau})$.

Definition 2.3: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be a $(r^*g^*)^*$ -irresolute map [7] if $f^{-1}(V)$ is a $(r^*g^*)^*$ -closed set in (X, τ) for every $(r^*g^*)^*$ -closed set V of (Y, σ) .

Definition 2.4: A Space (X, τ) is called $(r^*g^*)^*T_{1/2}$ space [8] if every $(r^*g^*)^*$ closed set in it is closed.

Definition 2.5: Let X be Topological space. Let A be a subset of X. (r*g*)* closure [8] of A is defined as the intersection of all (r*g*)* closed sets containing A.

Definition 2.6: A property P holding good for a topological space (X, \mathfrak{I}) and which is also Hold good for every subspace of the topological space is called Hereditary property.

www.iaset.us

Definition 2.7: A collection C of subsets of X is said to have the finite intersection property (FIP) if for every finite sub collection {C₁, C2, C_n} of C, the intersection C₁ \cap C₂ \cap . . . \cap C_n is non empty.

3. (r*g*)* CONNECTEDNESS

Definition 3.1: A Topological space X is called $(r^*g^*)^*$ connected if X cannot be written as a Union of two nonempty disjoint $(r^*g^*)^*$ open sets.

Definition 3.2: A subset A of X is $(r^*g^*)^*$ connected if it is $(r^*g^*)^*$ connected as subspace of X.

Example 3.3: Let $X = \{a,b,c\}$, $\mathcal{T} = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. $(r^*g^*)^*$ closed sets are ϕX , $\{c\}, \{b,c\}, \{a,c\}$. $(r^*g^*)^*$ open sets are ϕ , $X, \{a\}, \{b\}, \{a,b\}$. Here X cannot be written as the Union of two non empty, disjoint $(r^*g^*)^*$ open sets . Hence X is $(r^*g^*)^*$ connected.

Another way of defining $(r^*g^*)^*$ connectedness is as follows.

Definition 3.4: A space X is $(r^*g^*)^*$ connected iff the only subsets of X that are both $(r^*g^*)^*$ open and

 $(r^*g^*)^*$ - closed in X are the empty set and X itself.

Proof: If A is a non-empty proper subset of X that is both $(r^*g^*)^*$ open and $(r^*g^*)^*$ closed in X, then the sets A and X - A constitute a separation of X, Since they are $(r^*g^*)^*$ open, disjoint and non- empty and their Union is X. Conversely if X and Φ are the only $(r^*g^*)^*$ closed subsets TPT that X is $(r^*g^*)^*$ connected. If not Let X=A U B Where A and B are two non empty, disjoint $(r^*g^*)^*$ open sets which \Rightarrow B= X-A which is both $(r^*g^*)^*$ open and $(r^*g^*)^*$ closed which is a contradiction. Therefore X is connected.

Example 3.5: Let $X = \{a, b\}$, $\Im = \{\phi, X, \{a\}\}$ $(r^*g^*)^*$ Closed sets are ϕX , $\{b\}$. $(r^*g^*)^*$ Open sets are ϕX , $\{a\}$. The only subsets of X that are both $(r^*g^*)^*$ open and $(r^*g^*)^*$ closed are ϕ and X. Hence X is $(r^*g^*)^*$ connected.

Remark 3.6: Any indiscrete space with two points is $(r^*g^*)^*$ connected. A two point set with discrete topology is not $(r^*g^*)^*$ connected.

Example 3.7: Let $X = \{a, b\}, \mathfrak{I} = \{\phi, X, \{a\}, \{b\}\}, \mathfrak{I}$ Closed = $\{\phi, X, \{a\}, \{b\}\}$ (r*g*)* Open sets are $\phi, X, \{a\}, \{b\}$. Here X is not (r*g*)*connected.

Example 3.8: Let X be the subspace [-1, 1] (with order topology) of the Real line. Consider the sets [-1, 0]. Since every closed set is $(r^*g^*)^*$ closed, [-1, 0] is $(r^*g^*)^*$ closed and [0, 1] is $(r^*g^*)^*$ open. Then they are disjoint and non-empty and their union is X = [-1, 1] but [0, 1] is not $(r^*g^*)^*$ open. Hence There is no separation and hence X is $(r^*g^*)^*$ connected.

Remark 3.9: The $(r^*g^*)^*$ connectedness property is not a hereditary property. The following example proves this.

Example 3.10: Let X={a, b, c}, $\Im = \{ \overset{\emptyset}{,} X, \{a\}, \{b\}, \{a, b\} \}$ (r*g*)* open sets= { $\overset{\emptyset}{,} X, \{a\}, \{b\}, \{a, b\} \}$ (r*g*)* closed sets= { $\overset{\emptyset}{,} X, \{c\}, \{a, c\}, \{b, c\} \}$

Here the only subsets which are both $(r^*g^*)^*$ open and $(r^*g^*)^*$ closed sets are \bigvee and X and hence X is $(r^*g^*)^*$

Impact Factor (JCC): 2.6305

(r*g*)* Connectedness and (r*g*)*Compactness in Topological Spaces

connected. Let $Y = \{a, b\}$

The relative topology $\mathfrak{I}^* = \{ A^{\bigcap} Y / A^{\subseteq} \mathfrak{I} \}$

$$\mathfrak{I}^{*}=\{Y, \emptyset, \{a\}, \{b\}\}$$

 $(r^*g^*)^*$ open sets= { $(0, Y, \{a\}, \{b\})$ }

Now {a} is $(r^*g^*)^*$ open. Its complement {b} is also $(r^*g^*)^*$ open.

a is both $(r^*g^*)^*$ open and $(r^*g^*)^*$ closed set.

 \Rightarrow Y is not (r*g*)* connected.

Theorem 3.10: Every (r*g*)* connected space is connected.

Proof: Let X be a (r*g*)* connected space. If possible Let X be not connected.

Then X can be written as $X = A \cup B$ Where A and B are disjoint, nonempty open sets. But Every open set is $(r^*g^*)^*$ open set in $X \Rightarrow X$ is not $(r^*g^*)^*$ connected which is a contradiction. Hence X is connected.

The Converse of the above theorem is true whenever X is $(r^*g^*)^* T_{1/2}$.

Theorem 3.11: Let X be $(r^*g^*)^* T_{1/2}$. Every connected space is $(r^*g^*)^*$ connected.

Proof: Let X be connected. To Prove that: X is $(r^*g^*)^*$ connected. Suppose X is not $(r^*g^*)^*$ connected. Let A & B be any two $(r^*g^*)^*$ open subsets of X such that $X = A \cup B$ such that $A \cap B = \varphi$. Since X is $(r^*g^*)^*T_{1/2}$, every $(r^*g^*)^*$ open set is open and hence A & B are open sets of X.

Which contradicts that X is connected \therefore X is $(r^*g^*)^*$ connected.

Theorem 3.12: Let X be a Topological space. Let Y be $(r^*g^*)^*$ connected subspace of X. If X can be written as the Union of two $(r^*g^*)^*$ open sets of X then Y lies entirely within A or B.

Proof: Let X=A U B and A \cap B= φ . Since A and B are $(r^*g^*)^*$ open in X then A \cap Y and B \cap Y are $(r^*g^*)^*$ open in Y. Now A \cap Y and B \cap Y are disjoint and their union is Y. If both were nonempty then they form a separation of Y which is a contradiction. Hence one of them is empty. Suppose A \cap Y = φ Then Y = (A \cap Y) U (B \cap Y) => Y = (A \cap B) U Y= φ U (B \cap Y) => Y \subseteq B. similarly we can discuss the case B \cap Y = φ .

Theorem 3.13: The $(r^*g^*)^*$ closure of $(r^*g^*)^*$ connected set is $(r^*g^*)^*$ connected.

Proof: Let E be a $(r^*g^*)^*$ connected subset of (X, \Im) . TST $(r^*g^*)^*$ cl(E) is connected. If not $(r^*g^*)^*$ cl(E) can be written as $(r^*g^*)^*$ cl(E) = A U B where A,B are -disjoint $(r^*g^*)^*$ open sets . Now $E \subseteq (r^*g^*)^*$ cl(E) = A U B $\Rightarrow E \subseteq A$ or $E \subseteq B$. $E \subseteq A \Rightarrow (r^*g^*)^*$ cl $E \subseteq (r^*g^*)^*$ cl $A \Rightarrow (r^*g^*)^*$ cl

$$\Rightarrow (r^*g^*)^*cl \ E \cap B = \phi \dots \qquad (1)$$

Also(r^*g^*)* cl E = A U B \Rightarrow B \subseteq (r^*g^*)* clE implies B \cap (r^*g^*)* cl E = B ------(2)

From (1) & (2), B = ϕ which is a contradiction. Similarly if E \subseteq B we can get A = ϕ .

 $r^{*}(r^{*}g^{*})^{*}cl(E)$ must be $(r^{*}g^{*})^{*}$ connected.

Theorem 3.14: If E is a subset of a Topological space (X, \Im) then $(r^*g^*)^*$ closure of E is, $(r^*g^*)^*$ connected iff E is not the Union of any two non-empty sets A and B such that $(r^*g^*)^*$ cl $A \cap (r^*g^*)^*$ cl $B = \varphi$

Proof: Let $(r^*g^*)^*$ cl E be $(r^*g^*)^*$ connected. Suppose E is the Union of two non-empty $(r^*g^*)^*$ open sets A and B such that $(r^*g^*)^*$ cl(A) \cap $(r^*g^*)^*$ cl(B)= φ .

Now
$$E = A \cup B \Rightarrow (r^*g^*)^*cl (E) = (r^*g^*)^*cl (A \cup B) = (r^*g^*)^*cl(A) \cup (r^*g^*)^*cl (B)$$

Also since $(r^*g^*)^* cl((r^*g^*)^*cl(A)) = (r^*g^*)^* cl(A)$.

$$(r^*g^*)^* cl(A) \cap (r^*g^*)^* cl(B) = \phi \Rightarrow (r^*g^*)^* cl\{(r^*g^*)^* cl(A)\} \cap (r^*g^*)^* cl(B) = \phi$$
(1)

Similarly we can get,
$$(r^*g^*)^* cl (A) \cap (r^*g^*)^* cl ((r^*g^*)^*cl(B)) = \varphi$$
 ------ (2)

From (1) & (2), we can conclude that $(r^*g^*)^*cl \in E$ has a separation which implies $(r^*g^*)^*cl \in E$ is disconnected, which is a contradiction

∴ E cannot be expressed as a Union of two non-empty disjoint (r*g*)* open sets such that

 $(r^*g^*)^* cl (A) \cap (r^*g^*)^* cl (B) = \varphi.$

Conversely

If E is not the union of two non-empty disjoint $(r^*g^*)^*$ open sets such that $(r^*g^*)^* \operatorname{cl}(A) \cap (r^*g^*)^* \operatorname{cl}(B) = \varphi$.

To prove $(r*g^*)*cl(E)$ is $(r*g^*)*connected$. If not $E \subset (r*g^*)*cl(E) = A \cup B$ where A,B are -disjoint $(r*g^*)*$ open sets which is a contradiction. Hence $(r*g^*)*cl(E)$ is connected.

Theorem 3.15: The Union of any family of $(r^*g^*)^*$ connected sets having non-empty intersection property is $(r^*g^*)^*$ connected.

Proof: Let $\{E_{\alpha}: \alpha \in \Lambda\}$ be a family of $(r^*g^*)^*$ connected subsets with the property that $\cap \{E_{\alpha}: \alpha \in \Lambda\}$ is non – empty. Let $E = \bigcup \{E_{\alpha}: \alpha \in \Lambda\}$. To prove that E is $(r^*g^*)^*$ connected. If not, E can be written as Union of two non-empty disjoint $(r^*g^*)^*$ open sets such that $\bigcup E_{\alpha} = E = A \cup B$ and $E_{\alpha} \subseteq A \cup B$, for every α .

Since each E_{α} is connected, $E_{\alpha} \subseteq A$ or $E_{\alpha} \subseteq B$ for each $\alpha \in \Lambda \Rightarrow \bigcup E_{\alpha} \subseteq A$ or $\bigcup E_{\alpha} \subseteq B$

 \Rightarrow E \subseteq A or E \subseteq B----(1)

Since $\cap \{E_{\alpha} : \alpha \in \Lambda\}$ is non-empty, Let $x \in \cap \{E_{\alpha} : \alpha \in \Lambda\}$. Then $x \in E_{\alpha}$, for every $\alpha \in \Lambda$

Hence $x \in E = \bigcup \{ E_{\alpha:} \alpha \in \Lambda \}$ $\therefore x \in E \Rightarrow x \in A$ or $x \in B$ [by(1)]. x cannot belong to both A and B.

 \therefore if xCA then x \notin B \Rightarrow E \notin B (by 1)

 \Rightarrow E \subseteq A, which is a contradiction. \Rightarrow E must be (r*g*)* connected.

Theorem 3.16: The Union of any family of $(r^*g^*)^*$ connected subsets with the property that, one of the member of the family intersects every other member is a $(r^*g^*)^*$ connected set

Impact Factor (JCC): 2.6305

Proof: Let { E_{α} : $\alpha \in \Lambda$ } be a family of $(r^*g^*)^*$ connected subsets of (X, \Im) with the property that one of the members say $E\alpha_0$ intersects every other member. (i.e.) $E\alpha_0 \cap E\alpha \ddagger \phi$, for every $\alpha \in \Lambda$

To Prove: $E = \bigcup E_{\alpha}$ is connected. Now $E \alpha_0 \bigcup E\alpha$ being the union of $(r^*g^*)^*$ connected subset having non-empty intersection is a $(r^*g^*)^*$ connected set.

Now, let $E\alpha_p$ and $E\alpha_q$ be any two members of the family so that $E\alpha_0 \cap E\alpha_p^{\ddagger}\phi$ and $E\alpha_0 \cap E\alpha_q^{\ddagger}\phi$

Now $(E \alpha_0 \cup E \alpha_p) \cap (E \alpha_0 \cup E \alpha_q) = E \alpha_0 \cup (E \alpha_p \cap E \alpha_q) \ddagger \varphi$ ------(2)

 $\therefore \cap (E\alpha_0 \cup E\alpha) = E\alpha_0 \cup (\cap E\alpha) \neq \phi$ [since $E\alpha_0 \neq \phi$]

 \Rightarrow U (E α_0 U E α) is connected.

 \Rightarrow E α_0 U (U E α) = U E α is connected.

Since it is given that $E\alpha_0$ intersects every other member of the family and $E\alpha_0^{\neq} \phi$,

We conclude that
$$(E\alpha_0 \cup E\alpha_p) \cap (E\alpha_0 \cup E\alpha_q)^{\ddagger} \varphi, p^{\ddagger} q^{------}$$
 (3)

⇒The collection {E α_0 U E α : $\alpha \in \Lambda$ } has non-empty intersection. ^{*} It is (r*g*)* Connected.

(i.e) $\mathsf{U}_{\{\mathsf{E}^{\alpha}_{0} \cup \mathsf{E}^{\alpha}: \alpha \in \Lambda\}}$ is a $(r^{*}g^{*})^{*}$ connected set or $\mathsf{E}= \mathsf{U}_{\{\mathsf{E}^{\alpha} \land \alpha \in \Lambda\}}$ is a $(r^{*}g^{*})^{*}$ connected

Theorem 3.17: Let A be a $(r^*g^*)^*$ connected subspace of X. If $A \subseteq B \subseteq (r^*g^*)^*$ cl (A) then B is also $(r^*g^*)^*$ connected.

Proof:

Let A be $(r^*g^*)^*$ connected.

To Prove that: B is $(r^*g^*)^*$ connected.

If, not let $B = C \cup D$ Since $A \subseteq B$, A must lie entirely in C or D.

Suppose $A \subseteq C$ then $(r^*g^*)^* \operatorname{cl} (A) \subseteq (r^*g^*)^* \operatorname{cl} (C)$

 $(r^*g^*)^* \text{ cl } (A) \cap D \subseteq (r^*g^*)^* \text{ cl } (C) \cap D = \phi$

Now
$$D \subseteq B$$
, And $B \subseteq (r^*g^*)^*$ cl (A). Now $\varphi \subseteq D=D \cap B \subseteq (r^*g^*)^*$ cl (A) $\cap D \subseteq \varphi$

 \Rightarrow D = ϕ which is a contradiction. \therefore B is $(r^*g^*)^*$ connected.

Remark 3.18: In the above theorem if we replace B by (r*g*) cl (A) we can get Theorem 3.13

Theorem 3.19: Let $f:X \xrightarrow{\rightarrow} Y$ be $(r^*g^*)^*$ continuous and onto. If X is $(r^*g^*)^*$ connected, Then Y is also connected.

Proof:

Suppose Y is not connected. Let $Y = A \cup B$ where A nd B are disjoint non-empty open sets in Y.

Since f is $(r^*g^*)^*$ continuous, $f^1(A)$ and $f^1(B)$ are disjoint non-empty $(r^*g^*)^*$ open sets.

Since f is onto, f(X) = Y. We have $X = f^{1}(A) \cup f^{1}(B)$

Which contradicts the fact that X is $(r^*g^*)^*$ connected. \checkmark Y is connected.

Theorem 3.20: If $f: X \xrightarrow{\rightarrow} Y$ is a $(r^*g^*)^*$ irresolute and onto, X is $(r^*g^*)^*$ connected then Y is $(r^*g^*)^*$ connected.

Proof:

Suppose Y is not $(r^*g^*)^*$ connected then $Y = A \cup B$ Where A & B are non-empty disjoint $(r^*g^*)^*$ open sets. Since f is $(r^*g^*)^*$ -irresolute, $f^1(A)$ and $f^1(B)$ are $(r^*g^*)^*$ open sets and $X = f^1(A) \cup f^1(B) \Rightarrow X$ is not $(r^*g^*)^*$ connected which is a contradiction. $\hat{} Y$ is $(r^*g^*)^*$ connected.

4. (r*g*)* compact space.

Definition 4.1: A collection $\{G_{\alpha} : \alpha \in \Lambda\}$ of $(r^*g^*)^*$ open sets in a topological space X is called a

 $(r^*g^*)^*$ Open cover of a subset A of X, If $A \subset \bigcup \{G_{\alpha} : \alpha \in \Lambda\}$.

Definition 4.2: A Topological space X is $(r^*g^*)^*$ compact if every $(r^*g^*)^*$ open cover has a finite subcover.

In other words if $C = \{G_{\alpha} : \alpha \in \Lambda\}$ of $(r^*g^*)^*$ opensets then C is a $(r^*g^*)^*$ open cover for X iff

 $X = \bigcup \{G_{\alpha} : \alpha \in \Lambda\}$. Now If there exists $G\alpha_1 G\alpha_2 G\alpha_3 \dots G\alpha_n$ in this collection C such that $X = \bigcup \{G_{\alpha i} : :i=1,2,...n\}$ then X is said to be $(r^*g^*)^*$ compact space.

Remark 4.3: Consider the discrete Topological space.

Case: 1 Let X be finite.

Then the number of $(r^*g^*)^*$ open subsets of X is also finite so every $(r^*g^*)^*$ covering of X is finite and hence any $(r^*g^*)^*$ sub cover of X is also finite so that it is $(r^*g^*)^*$ compact. In particular every finite subset of a Topological space is always $(r^*g^*)^*$ compact.

Case: 2 Let X be infinite

Now $C = \{\{x\}/x \in X\}$ is a infinite $(r^*g^*)^*$ open covering for X as $X = \bigcup \{\{x\}/x \in x\}$ and hence there does not exists any finite sub collection C' such that X is the Union of that collection. Hence it does not have a finite sub cover. Thus an infinite discrete topological space is not $(r^*g^*)^*$ compact. In particular every infinite subset of a discrete topological Space is not $(r^*g^*)^*$ compact.

On the other hand if we consider the indiscrete topological space then $C = \{X\}$ such that $X = \bigcup \{X\}$, then C is a $(r^*g^*)^*$ Covering for X which consists of only one set and hence finite. Therefore X is a $(r^*g^*)^*$ compact space.

Remark 4.3: By Remark 1 Every finite set is (r*g*)* compact

Example 4.4: Let $X = \{a, b, c\} \mathfrak{I} = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. (X, \mathfrak{I}) is $(r^*g^*)^*$ compact Since X is finite.

Definition 4.5: A subset B of a Topological space is said to be $(r^*g^*)^*$ compact if B is $(r^*g^*)^*$ compact as a subspace of X.

Impact Factor (JCC): 2.6305

Theorem 4.6: If a map $f: X \to Y$ be $(r^*g^*)^*$ irresolute and a subset B of X be $(r^*g^*)^*$ compact relative to X, then f(B) is $(r^*g^*)^*$ compact relative to Y.

Proof: Let { A_{α} : $\alpha \in \Lambda$ } be any collection of $(r^*g^*)^*$ open subsets of Y such that

 $f(B) \subset \bigcup \{ A_{\alpha} : \alpha \in \Lambda \}$ then $B \subset \bigcup \{ f^{1}(A_{\alpha}) : \alpha \in \Lambda \}$ but B is $(r^{*}g^{*})^{*}$ compact relative to X.

Therefore, There exists a finite sub cover $B \subset i=1$ { $f^1(A_i)$ } $\Rightarrow f(B) \subset \bigcup_{i=1}^n$ { (A_i) }

 \Rightarrow f (B) is (r*g*)*compact.

Hence we can prove the following:

Theorem 4.7: A (r*g*)* continuous image of a (r*g*)* compact space is compact.

Theorem 4.8: If f: $X \rightarrow Y$ is $(r^*g^*)^*$ irresolute and bijection and X is $(r^*g^*)^*$ compact then Y is a $(r^*g^*)^*$ compact space.

Proof: Let { $A_{\alpha} : \alpha \in \Lambda$ } be a $(r^*g^*)^*$ open cover of Y. Then $Y = \bigcup A_{\alpha}$. Since f is a bijection, we have f(X) = Y or $f^{-1}(Y) = X$ But $f^1(\bigcup A_{\alpha}) = \bigcup \{f^1(A_{\alpha})\}$ Since f is $(r^*g^*)^*$ irresolute $f^1(A_{\alpha})$ is $(r^*g^*)^*$ open for each $\alpha \in \Lambda$. But X is $(r^*g^*)^*$ compact therefore there exists finitely many indices $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that

 $X= \bigcup f^{-1}(A_{\alpha i}) \therefore Y=f(X)=f(\bigcup f^{-1}(A_{\alpha i}))= \bigcup A_{\alpha i} Where i=1,2,\dots n.$

 \Rightarrow Y is $(r^*g^*)^*$ compact.

Theorem 4.9: Every $(r^*g^*)^*$ closed subset of a $(r^*g^*)^*$ compact space is $(r^*g^*)^*$ compact relative to X.

Proof: Let A be a $(r^*g^*)^*$ closed subset of X. Then A^c is $(r^*g^*)^*$ Open. Let $C = \{G_{\alpha}: \alpha \in \Lambda\}$ be a $(r^*g^*)^*$ open cover of A (by subsets of X) Then Let $M = C \cup A^c$ is an $(r^*g^*)^*$ open cover of X. That is $X \subset \bigcup \{G_{\alpha}: \alpha \in \Lambda\} \cup A^c$

Since X is $(r^*g^*)^*$ compact M has a finite sub cover say $(G_1, \bigcup G_2 \ldots \bigcup G_n) \bigcup A^c$

But A and A^c are disjoint hence $A \subset G_1 \cup G_2 \dots \cup G_n$. The open cover C has a finite $(r^*g^*)^*$ sub cover . Hence A is $(r^*g^*)^*$ Compact.

The following example shows that a (r*g*)* compact subset of a Topological Space need be not (r*g*)* closed.

Example 4.10: Let $X = \{a, b, c, d\}, \Im = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$

 $(r^*g^*)^*$ Open sets are Φ , X, {a, b, c}, {b, c}, {a, c} {a, b}, {c}, {b}, {a}

Let A = {a, b, c}, then A can be written as, A = {a, c} U {a, b} U {b}

A is $(r^*g^*)^*$ compact. But A is not $(r^*g^*)^*$ closed.

Theorem 4.11: A space X is $(r^*g^*)^*$ compact iff each family of $(r^*g^*)^*$ closed subsets of X with the finite intersection property has non empty intersection.

Proof: Let X be $(r^*g^*)^*$ compact. Let A be any collection of $(r^*g^*)^*$ closed sets with F. I. P

Let $\mathcal{A} = \{F_{\alpha} : \alpha \in \Lambda\}$ be an arbitrary collection of $(r^*g^*)^*$ closed subsets of X with F.I.P

So that \cap {F_{ai}: i=1,2...n : } $\neq \phi$ (1)

Now TPT: $\cap \{ F_{\alpha} : \alpha \in \Lambda \} \neq \phi$

Suppose this is not true. Then we have $\cap \{ F_{\alpha} : \alpha \in \Lambda \} = \varphi$.

By taking complement we have $\bigcup \{F\alpha^c : \alpha \in \Lambda \} = X$

But each F_{α} is $(r^*g^*)^*$ closed, $F\alpha^c$ is $(r^*g^*)^*$ open

: $\{F_{\alpha}^{\ c}: \alpha \in \Lambda\}$ becomes an $(r^*g^*)^*$ open cover for X. But X is $(r^*g^*)^*$ compact.

: There exists finitely many indices $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that X= U {F_{$\alpha i}^c : i=1,2,\ldots,n$ }</sub>

Taking complement both sides We get $\varphi = \bigcap \{F_{\alpha i} : i=1,2,...n\}$ which is a contradiction to (1).

Hence $\cap \{F_{\alpha} : \alpha \in \Lambda\} \neq \phi$

Conversely suppose any collection of (r*g*)* closed sets with FIP has a non empty

Intersection Let $\mathcal{B} = \{G_{\alpha} : \alpha \in \Lambda\}$ where B is a $(r^*g^*)^*$ open cover of X and hence

 $X = \bigcup \{G_{\alpha} : \alpha \epsilon \Lambda\} \text{ Taking complements we have } \phi = \cap \{G_{\alpha} : \alpha \epsilon \Lambda \}$

But G_{α}^{c} is $(r^{*}g^{*})^{*}$ closed. \therefore The collection of $(r^{*}g^{*})^{*}$ closed subsets has empty intersection.

: It does not satisfy F.I.P. Hence there exists a finite number of (r*g*)* closed sets

 $G_{\alpha i}{}^{c}$ where i = 1, 2, ..., n with empty intersection. That is $\{G_{\alpha i}{}^{c}: i = 1, 2, ..., n\} = \varphi$

Again taking complement { $G_{\alpha i}{}^{c}$: i = 1, 2, ... n } = X

∴ B Has a finite subcover. Hence X is (r*g*)* compact.

REFERENCES

- K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi univ.ser A. Maths, 12(1991), 5-13
- S. S. Benchalli, Priyanka M. Bansali, gb-Compactness and gb-connectedness Topological Spaces, Int. J. Contemp. Math. Sciences vol 6, 2011, no. 10, 465-475
- 3. S. Eswaran, A. Pushpalatha, 3*-Generalized compact spaces and 3*-Generalized connected Spaces in Topological Spaces, International Journal of Engineering Science and Technology, Vol.2(5), 2010, 2466-2469.
- 4. N. Levine, Generalized closed sets in topology, Rend.Circ.Math.Palermo, 19(2) (1970), 89-96.
- 5. N. Meenakumari and T. Indira, r*g* closed sets in topological spaces, Annals of Pure and Applied Mathematics vol.6, No. 2,2014,125-132.
- N. Meenakumari and T. Indira, on(r*g*)* closed sets in topological spaces, International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064, Volume 4 Issue 12, December 2015

- N. Meenakumari and T. Indira, on(r*g*)* continuous maps in topological spaces, International Journal of Development Research Vol.6, Issue04, pp.7402-7408, 2016.ISSN:2230-9926
- 8. N. Meenakumari and T. Indira, Few applications of (r*g*)* closed sets in topological spaces, International Journal of Mathematics and computer Research Vol 4 issue 05, 2016, ISSN 2320-7167.
- 9. M. Al. Shibani, rg-compact spaces and rg-connected spaces, Mathematica Pannonical 17/1 (2006), 61-68